Topological spaces associated to higher-rank graphs
نویسندگان
چکیده
We investigate which topological spaces can be constructed as topological realisations of higher-rank graphs. We describe equivalence relations on higher-rank graphs for which the quotient is again a higher-rank graph, and show that identifying isomorphic co-hereditary subgraphs in a disjoint union of two rank-k graphs gives rise to pullbacks of the associated C∗algebras. We describe a combinatorial version of the connected-sum operation and apply it to the rank-2-graph realisations of the four basic surfaces to deduce that every compact 2-manifold is the topological realisation of a rank-2 graph. We also show how to construct k-spheres and wedges of k-spheres as topological realisations of rank-k graphs.
منابع مشابه
Coverings of K-graphs
k-graphs are higher-rank analogues of directed graphs which were first developed to provide combinatorial models for operator algebras of Cuntz-Krieger type. Here we develop the theory of covering spaces for k-graphs, obtaining a satisfactory version of the usual topological classification in terms of subgroups of a fundamental group. We then use this classification to describe the C∗algebras o...
متن کاملm at h . O A ] 3 J an 2 00 4 COVERINGS OF k - GRAPHS
k-graphs are higher-rank analogues of directed graphs which were first developed to provide combinatorial models for operator algebras of Cuntz-Krieger type. Here we develop the theory of covering spaces for k-graphs, obtaining a satisfactory version of the usual topological classification in terms of subgroups of a fundamental group. We then use this classification to describe the C∗algebras o...
متن کاملReal Rank and Topological Dimension of Higher Rank Graph Algebras
We study dimension theory for the C∗-algebras of row-finite k-graphs with no sources. We establish that strong aperiodicity—the higher-rank analogue of condition (K)—for a k-graph is necessary and sufficient for the associated C∗-algebra to have topological dimension zero. We prove that a purely infinite 2-graph algebra has real-rank zero if and only if it has topological dimension zero and sat...
متن کاملQuasi-flats and Rigidity in Higher Rank Symmetric Spaces
In this paper we use elementary geometrical and topological methods to study some questions about the coarse geometry of symmetric spaces. Our results are powerful enough to apply to noncocompact lattices in higher rank symmetric spaces, such as SL(n,Z), n ≥ 3 : Theorem 8.1 is a major step towards the proof of quasiisometric rigidity of such lattices ([E]). We also give a different, and effecti...
متن کاملSymmetric spaces of higher rank do not admit differentiable compactifications
Any nonpositively curved symmetric space admits a topological compactification, namely the Hadamard compactification. For rank 1 spaces, this topological compactification can be endowed with a differentiable structure such that the action of the isometry group is differentiable. Moreover, the restriction of the action on the boundary leads to a flat model for some geometry (conformal, CR or qua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 143 شماره
صفحات -
تاریخ انتشار 2016